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Abstract 
 

This paper presents an uncertainty analysis of 
the Single-Vector Force Balance Calibration System 
(SVS).  This study is focused on the uncertainty 
involved in setting the independent variables during the 
calibration experiment.  By knowing the uncertainty in 
the calibration system, the fundamental limits of the 
calibration accuracy of a particular balance can be 
determined.  A brief description of the SVS mechanical 
system is provided.  A mathematical model is 
developed to describe the mechanical system elements.  
A sensitivity analysis of these parameters is carried out 
through numerical simulations to assess the sensitivity 
of the total uncertainty to the elemental error sources. 
These sensitivity coefficients provide valuable 
information regarding the relative significance of the 
elemental sources of error.  An example calculation of 
the total uncertainty for a specific balance is provided.  
Results from this uncertainty analysis are specific to the 
Single-Vector System, but the approach is broad in 
nature and therefore applicable to other measurement 
and calibration systems. 

 
Nomenclature 

 
α  angle in the pitch direction 
φ  angle in the roll direction 

, ,x y z  linear distances to center of gravity 
e
�  position offset 
λ  rotation matrix 
A axial force in the BCS 
BCS balance coordinate system 
CG center of gravity 
F force 
GCS gravitational coordinate system 
gx,gy,gz projection of the gravity vector onto the 

balance axes 
N normal force in the BCS 
P pitching moment in the BCS 
R rolling moment in the BCS 
S side force in the BCS 
x,y,z linear distances 
Y yawing moment in the BCS 
 
Subscripts 
a applied weight 
bke below the knife-edge system 
f load point on the fixture 
FPS force positioning system 
IBS inner bearing support 
ig initial geometrical offset 
k load point on the yoke at the location of 

the knife-edges 
KE knife-edge 
KES knife-edge attachment system 
LT load template 
mc1 moment correction due to the yoke load 

point position 
mc2 moment correction due to the yoke CG 

location 
mc3 moment correction due to the 2-axis 

accelerometer CG location 
p weight pan 
q2x 2-axis accelerometer system 
s fasteners to attach FPS to fixture 
sub sub assembly of the FPS (does not include 

fasteners) 
w precision weights 
yk yoke 
 

Introduction 
 

Direct measurement of aerodynamic loading is 
fundamental to wind tunnel testing.  An instrument 
known as a force balance provides these measurements 
in six degrees of freedom.  The balance is mounted 
internally in a scaled wind tunnel model and measures 
three orthogonal components of aerodynamic force 
(normal, axial, and side force) and three orthogonal 
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components of aerodynamic torque (rolling, pitching, 
and yawing moments). 

A force balance is a complex structural spring 
element instrumented with electrical strain sensors.  
Ideally, each strain sensor of the balance would respond 
only to its respective component of load, and it would 
have no response to other components of load.  This is 
not entirely possible, even though balance designs are 
optimized to minimize these undesirable interaction 
effects.  Ultimately, a calibration experiment is 
performed to obtain the necessary data to generate a 
mathematical model and determine the force 
measurement accuracy. 

In general, force balance calibration consists of 
setting the independent variables and measuring the 
response of the dependent variables.  The applied loads 
are the independent variables, and the electrical 
responses of the balance are the dependent variables.  In 
a force balance calibration there are six independent 
variables and six dependent variables corresponding to 
each of the components.  The uncertainty in setting the 
six independent variables of applied load must be 
determined in order to determine the attainable 
accuracy of the force balance under calibration. 

Recently Langley Research Center (LaRC) has 
developed the Single-Vector Force Balance Calibration 
System (SVS) that integrates a unique single-vector 
load application mechanism with a “modern design of 
experiments” (MDOE) experimental approach.[1,2]  This 
innovative system represents a significant advancement 
in force balance calibration technology and has enabled 
an order of magnitude reduction in calibration time and 
cost, while simultaneously increasing calibration 
quality.  The system also features significantly fewer 
mechanical components than previous force balance 
calibration systems and therefore fewer sources of 
systematic error. 

The SVS enables the complete calibration of a six-
component force balance with a series of single force 
vectors.  Calibrated dead-weight loads are applied in 
the gravitational direction generating six component 
combinations of load relative to the coordinate system 
of the balance.  By utilizing this single force vector, 
load application inaccuracies caused by the 
conventional requirement to generate multiple force 
vectors are fundamentally reduced.  The primary 
components include a non-metric positioning system, a 
multiple degree of freedom force positioning system, a 
three-axis orthogonal accelerometer system, and 
calibrated weights (see Figure 1).  
 

 
Figure 1.  Single-Vector System 

 
The MDOE approach provides an integrated view to 

the entire calibration process covering all three major 
aspects of an experiment; the design of the experiment, 
the execution of the experiment, and the statistical 
analyses of the data.  

In order to quantify the uncertainty in setting the 
independent variables during the calibration 
experiment, a thorough uncertainty analysis of the SVS 
has been performed.  A mathematical model is 
presented, followed by an uncertainty analysis. 
 

Mathematical Model of the System 
 

To perform the uncertainty analysis and the 
subsequent simulations, a mathematical model was 
required.  This model provides the transfer function 
between the elemental sources of uncertainty and the 
resultant forces and moments applied to the balance 
under calibration.  The basic principles involved in 
setting the forces and moments is presented first 
followed by a more detailed description that includes 
the mechanical implementation details. 

The three balance force components are a function 
of the applied load and the orientation of the balance 
relative to the gravitational coordinate system.  To 
generate a desired combination of the three forces, the 
balance is manipulated to a prescribed orientation using 

Non-metric 
Positioning System 

Force Positioning 
System

3-axis Accelerometer 
System
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the non-metric positioning system, and the orientation 
of the balance is precisely measured on the metric end 
using the accelerometer system.  This accelerometer 
system provides the components of the gravitational 
vector projected onto the three-axes of the balance 
coordinate system.  Combining the measured 
gravitational components on the balance axes and the 
known applied weight enables the determination of the 
three force components. 

The three balance moment components are a 
function of the force vectors and the position of the 
point of load application in three-dimensional space 
relative to the balance moment center (BMC).  The 
BMC is a defined location in the balance coordinate 
system that serves as a reference point in which the 
moment components are described.  The point of load 
application is set using the multiple degree-of-freedom 
force positioning system.  This system utilizes a novel 
system of bearings and knife-edge rocker guides to 
maintain the load orientation, regardless of the angular 
orientation of the balance, which makes the point of 
load application independent of the angular orientation 
of the balance.  Stated another way, when the balance is 
manipulated in three-dimensional space, the point of 
load application remains fixed. 

A mechanical system provides the ability to set the 
independent variables during the calibration experiment 
as described above.  While the SVS hardware system is 
fundamentally simpler than other force calibration 
systems, the nature of the six-component calibration 
experiment still requires multiple mechanical degrees of 
freedom.  A drawing of the primary force application 
components of the SVS is provided in Figure 2.  The 
system consists of a number of high-precision 
mechanical components that contribute to the total 
uncertainty of the forces and moments set during the 
calibration experiment.  The ability to measure or 
calculate the geometric properties and weights of these 
components provides the elemental sources of error.  
The mathematical relationship between the component 
properties and the independent variables (forces and 
moments relative to the balance coordinate system) will 
now be presented. 

 
 

Figure 2.  Single-Vector Diagram 
 
Forces Due to the Applied Weights 

The computation of the independent variables is 
divided into two parts.  First, the forces are computed 
followed by the moments.  The total applied force is a 
combination of the precision weights and the measured 
weight of the rod and pan system,   
 a w pF F F= + . (1) 

The forces in the balance coordinate system (BCS) are  

 
a z

a a x

a y

N g

A F g

S g

  
   =   
     

. (2) 

The applied force is multiplied by the projection of the 
gravitational vector onto the balance axes.  In other 
words, the total force is decomposed into the vector 
components of the BCS. 
 
Forces Due to the Force Positioning System (FPS) 

The applied force due to the force positioning 
system (FPS) is a combination of the FPS subsystem 
weight and the fasteners that attach the FPS to the load 
template as follows, 
 FPS sub sF F F= + . (3) 

The forces relative to the BCS are  

 
FPS z

FPS FPS x

FPS y

N g

A F g

S g

  
   =   
     

. (4) 

 
Moments Due to the Applied Weights 

The moments generated due to the applied weight 
are a function of the magnitude and position of the 
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weight.  To determine the position relative to the 
balance coordinate system, the measured locations on 
the load template (LT) are combined with the offset of 
the pin locations of the FPS from the nominal location 
as follows, 

 
[ ] [ ]

T

f f f

T T

LT LT LT FPS FPS FPS

x y z

x y z x y z

  = 
+

. (5) 

The position vector and the computed forces are used to 
compute the moments relative to the BCS, 

 
0

0

0

a a a f

a a a f

a a a f

R N S x

P N A y

Y S A z

 − −   
    = −     
         

. (6) 

 
Moments due to the FPS 

Since the geometry of the FPS is not completely 
symmetric, there are moments generated as the 
orientation of the balance is changed.  Therefore the 
center of gravity of the mechanical components is 
computed and used to determine location about which 
the forces due to the weight of the FPS act.  The 
composite center of gravity (CG) of the FPS is 
computed from a combination of measured component 
weights and component CG from a high-fidelity solid 
model.  The composite CG is computed according to,  

 
( )(0) ( )( ) ( )( )

( )
sub IBS IBS IBS s s

FPS

sub s

F F F z F z
z

F F

− + +
=

+
, (7) 

 2 2 2( )(0) ( )( )

( )
sub s q x q x q x

FPS

sub s

F F F F y
y

F F

+ − +
=

+
. (8) 

Once the location of the CG is known, the mounting 
location of the FPS on the load template is added to 
determine the position vector, 

 
[ ]

[ ]0

T

FPS FPS FPS

T T

f f f FPS FPS

x y z

x y z y z

=

  + 
. (9) 

The moments due to the FPS are  

 
0

0

0

FPS FPS FPS FPS

FPS FPS FPS FPS

FPS FPS FPS FPS

R N S x

P N A y

Y S A z

− −     
     = −     
          

. (10) 

 
Moments Corrections Due to the Eccentricity of the 
Load Point on the Yoke 

Due to frictional effects in the large roll bearing, the 
position of the knife-edge system on the yoke is not 
able to fully self-align under the load point position on 
the load template.  The frictional effects only create a 
positioning error in the SVS, not a parallel load path as 
is commonly associated with frictional effects in other 
force measurement systems.  The effects of the 
eccentricity of the load point on the yoke are computed 
in three separate steps as follows. 

First the effect of the applied weight at the offset 
location is computed.  This offset is initially computed 

relative to a gravitational coordinate system (GCS) 
according to rotational orientation of the yoke as 
measured by the two-axis accelerometer system, 

 

sin( ) *

sin( ) *

0

y i yk KEGCS yk

x i yk KEGCS yk

z

T

yk x y zGCS GCS GCS

e y z

e x z

e

e e e e

φ

α

= −

= −

=

 =  
�

. (11) 

This offset must then be rotated into the balance 
coordinate system based on the measured attitude of the 
balance by the three-axis accelerometer system,  

 [ ][ ]( )T

yk RM PM ykBCS GCS
e eλ λ=� �

. (12) 

Two rotation matrices are required to perform the 
rotation in the pitch direction and then in the roll 
direction,  

 

1sin ( )

arc tan 2
2

BCS x

z
BCS

y

g

g

g

α

πφ

−= − −

 
= +   

 (13) 

 

0
2 2

cos 0
2 2

0
2 2

RM BCS

BCS

π π

π πλ φ

π π φ

 
 
 
  = −    
   +    

 (14) 

 

2 2

cos 0
2 2

2 2

BCS BCS

PM

BCS BCS

π πα α

π πλ

π πα α

  − +    
 

=  
 
  − −     

. (15) 

The total force that acts below the knife-edge where 
the offset occurs is based on a combination of the 
applied weight, the rod and pan assembly, and the 
knife-edge attachment system, 
 bke w p KESF F F F= + + . (16) 

Using this total force and the orientation of the BCS, 
the forces relative to the BCS is 

 
bke z

bke bke x

bke y

N g

A F g

S g

  
   =   
     

. (17) 

The moments are then computed based on these 
forces and the eccentricity on the load point that has 
been determined relative to the BCS. 

The moments due to the eccentricity of the load 
point are corrections to the previously computed 
moments, which assumed ideal alignment of the load 
point on the yoke under the load point on the template.   
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The first moment correction is 

 
1

1

1

0

0

0

mc bke bke

mc bke bke ykBCS

mc bke bke

R N S

P N A e

Y S A

− −   
   = −   
      

� . (18) 

 
Moments Correction Due to the Eccentricity of the 
Center of Gravity of the Yoke 

A second moment correction is based on the effect 
of the center of gravity (CG) of the yoke being rotated 
relative to the BCS.  In a similar manner, the position of 
the CG is determined by calculating its location relative 
to a GCS and then rotating it into the BCS, 

 0 sin( ) * 0
T

ykCG yk ykGCS
e zφ = − 
�

, (19) 

 [ ][ ]( )T

ykCG RM PM ykCGBCS GCS
e eλ λ=� �

. (20) 

The force applied at this rotated location is due to the 
weight of the yoke.  The forces relative to the BCS is 

 
ykCG z

ykCG yk x

ykCG y

N g

A F g

S g

   
   =   
      

. (21) 

The second moment correction is equal to  

 
2

2

2

0

0

0

mc ykCG ykCG

mc ykCG ykCG ykCGBCS

mc ykCG ykCG

R N S

P N A e

Y S A

 − − 
   = −  
     

� . (22) 

 
Moment corrections due to the Eccentricity of the 
Center of Gravity of the Two-Axis Accelerometer 
System 

The third moment correction is based on the 
location of the center of gravity of the two-axis 
accelerometer system relative to the BCS.  A similar 
procedure is followed to compute the location relative 
to the GCS, 

 2 20 sin( ) * 0
T

q xCG yk q xGCS
e zφ = − 
�

, (23) 

rotate into the BCS, 

 [ ][ ]( )2 2

T

q xCG RM PM q xBCS GCS
e eλ λ=� �

, (24) 

compute the forces, 

 
2

2 2

2

q x z

q x q x x

q x y

N g

A F g

S g

   
   =   
      

 (25) 

and calculate the moment correction, 

 
3 2 2

3 2 2 2

3 2 2

0

0

0

mc q x q x

mc q x q x q xBCS

mc q x q x

R N S

P N A e

Y S A

 − − 
   = −  
     

� . (26) 

 

Total Forces and Moments about the BCS 
Combining the intermediate results of the forces 

acting relative to the BCS provides the total forces as 

 
a FPS

a FPS

a FPS

N N N

A A A

S S S

     
     = +     
          

. (27) 

To calculate the total moments relative to the BCS, the 
moments assuming no eccentricity on the load point are 
combined with the three moment corrections as 

 
1 2 3

1 2 3

1 2 3

a FPS mc mc mc

a FPS mc mc mc

a FPS mc mc mc

R R R R R R

P P P P P P

Y Y Y Y Y Y

           
           = + + + +           
                      

. (28) 

Note that the eccentricity of the load point does not 
require corrections to the total forces. 

 
Uncertainty Analysis 

 
Based on the mathematical models presented, the 

total uncertainty of each measured component 
)S,Y,R,P,A,N(}{X k =  is given by the error 

propagation equation[3,4]  

 

1 2

2

, 1

( ) ( )( )
M

i jk
ik jk ij

FS k i ji j

var varvar X
S S

X

ζ ζ
ρ

ζ ζ=

  =∑  (29) 

where  
 1/2

jijiji )]var()var()/[cov(=   (30) 

is the correlation coefficient between the variables 
i
 

and 
j
, ><= 2

ii )(var  and ><= jiji )(cov  

are the variance and covariance, respectively, and the 
notation ><  denotes the statistical assemble average.  

Here the variables M}1i,{ i �=  denote a set of the 

parameters in the mathematical models for all the 
system elements of the SVS.  The normalized 
sensitivity coefficients 

ikS  are defined as  

 ( )( )ik i FS k k iS X Xζ ζ= ∂ ∂  (31) 

where FS kX  is the full-scale range of 
kX . 

A typical balance was chosen as an example to 
compute the total uncertainty.  The SVS experiment 
design involves 54 unique combinations of the six 
independent variables (the forces and moments).  
Within the 54 runs there are combinations of six 
variables simultaneously, two variables, and single 
variable set points, also referred to as pure-loads.  The 
uncertainty is dependent on the particular combination 
of variables applied.  Stated another way, the 
uncertainty depends on the simultaneous levels of the 
variables for a particular required combination in the 
calibration experiment design.  A detailed analysis was 
performed for each combination. 
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To explore the relationship between the elemental 
sources of error and the resultant forces and moments, a 
sensitivity study was performed.  The objective of this 
study was to quantify the relative importance of the 27 
elemental sources of error listed in Table I.  The 
sensitivity coefficients were estimated numerically.  In 
this case, the sensitivity coefficient matrix consists of 
27 rows associated with the elemental sources of error 
and 6 columns associated with each component of load.  
Since a local derivative is calculated, the sensitivity 
coefficient matrix will be different depending on the 
particular combination of load. 

As an example of this analysis, a six-component 
combination was chosen.  The 27 parameters of the 
SVS are listed in Table I along with the typical 
elemental errors.  In most calibration systems the 
combination of all six components is this most 
mechanically challenging and involves the maximum 
contribution of all sources of systematic error.  The 
SVS experiment design involves the application of all 
six components simultaneously at approximately 41% 
of the full-scale load range.  Figure 3 shows the 
estimated sensitivity coefficients for this six-component 
combination, where the elemental source index number 
refers to the parameters in Table I  

The uncertainties of the force components (N, A, S) 
are dominated by the applied load and the attitude 
measurement of the balance coordinate system relative 
to the gravitational coordinate system.  The forces are 
not influenced by the position of the force vector or the 
orientation of the yoke.  This is expected since the 
forces are not dependent on the location of application.  
Therefore, the forces will always have a lower 
uncertainty as compared to the moment components.  
This is a general result and not dependent on the 
particular balance under calibration. 

Furthermore, it is typically considered more difficult 
to accurately apply the force vectors when there exists a 
large ratio between the components, for example the 
ratio between normal force and axial force.  With the 
SVS, the ratio does not influence the uncertainty of the 
application of axial force.  A review of the elemental 
sources of error reveals that the uncertainty of all the 
forces will be the same regardless of force magnitude, 
since the elemental error associated with the precision 
of the weights is a constant percentage of the applied 
weight and the gravitational projection are also a 
constant percentage of the full scale applied load. 

In terms of the moment uncertainties, they are 
influenced by the same sources as the forces plus the 
elemental distances.  The elemental uncertainty of the 
distance is a constant in most cases.  Therefore for a 
longer distance the elemental uncertainty becomes less 
significant in terms of a percentage.  The results from 
the moment components are not general in nature, but 
are specific to the balance that is under calibration. 

For example, a balance with a large normal force 
and a relatively small rolling moment will have a large 
uncertainty in the rolling moment component.  This is 
due to the critical positioning of the normal force to 
avoid an unwanted rolling moment.  The larger the ratio 
between rolling moment and the normal force, the less 
critical the positioning becomes. 

The sensitivity coefficient matrix provides vital 
information about the elemental sources of error that 
have large contributions to the uncertainty of the setting 
of the independent variables.  It also provides useful 
information about the elemental sources of the error 
that are not critical.  Knowing which sources of error 
are dominant and which are not is crucial to the further 
development of the SVS.  While the sensitivity 
coefficient matrix is a useful tool that provides a 
relative comparison of the influence of the elemental 
sources, it is also useful to quantify the total 
uncertainty. 

The total uncertainty was calculated for all 54 
experimental runs in the calibration experiment.  The 
results are shown in Figure 4.  On each of the six plots 
the total uncertainty for each component, denoted by 
the six symbols, is plotted versus the percentage applied 
of each component.  For the plot in the top left corner 
of the figure, the total uncertainty of the components 
(N, A, P, R, Y, S) is plotted versus applied normal force 
expressed at a percentage of full-scale.  This plot 
illustrates the maximum uncertainty of the rolling 
moment component occurring at the maximum normal 
force level.  This due to the positioning error and is 
consistent with the previous discussion regarding this 
particular phenomenon. 

The six component combinations occur on each plot 
with the levels of the applied load at approximately 
41% of full-scale.  The pure loads, or two components 
simultaneously in the case of a moment, occur at the 
100% of full-scale level.  The moments are loaded in 
combination with a force due to the inability to generate 
a pure moment with a single force vector. 

Consistently across all plots the rolling moment has 
the highest total uncertainty of 0.025% at a six 
component combination, and 0.065% during a pure 
load.  This is due to the short distance of elemental 
source number 5, which is one of the dominant 
elemental sources contributing to the rolling moment 
total uncertainty.  This result is not general in nature, 
but is balance dependent as previously discussed. 

The total uncertainty of the force components is 
approximately 0.01% of full-scale.  This result is 
general and is not balance specific. 

For this particular example balance, the maximum 
total uncertainties for the N, A, P, R, Y, and S 
components are 0.009%, 0.010%, 0.023%, 0.065%, 
0.024%, 0.010% respectively. 
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Table I.  Parameters and Elemental Error Sources of the SVS 
 

   Range Range Mean Standard  

Index Variable Description Low High Level Deviation  

1 gz projection of gravity vector on z-axis -1 1  0.000020 g 

2 gx projection of gravity vector on x-axis -1 1  0.000020 g 

3 gy projection of gravity vector on y-axis -1 1  0.000020 g 

4 xLT CMM measured x location on load template -1.5625 1.5625  0.000200 inches 

5 yLT CMM measured y location on load template -0.625 0.625  0.000200 inches 

6 zLT CMM measured z location on load template constant  0.0000 0.000200 inches 

7 Fw measured force due to precision weights 0 160  0.01% % of FS 

8 Fp measured force due to rod and pan assembly constant  3.1566 0.000473 lbs. 

9 Fs measured force due to attachment screws constant  0.0322 0.000005 lbs. 

10 sz  calculated z-distance to the centroid of screws   -1.7500 0.001000 inches 

11 FIBS measured force due to the inner bearing support constant  6.7871 0.001018 lbs. 

12 IBSz  calculated z-distance to CG of IBS constant  -0.2867 0.001000 inches 

13 FFPS measured force due to FPS constant  30.1575 0.004524 lbs. 

14 xFPS CMM measured x location of pins in FPS constant  0.0025 0.000200 inches 

15 yFPS CMM measured y location of pins in FPS constant  -0.0006 0.000200 inches 

16 zFPS CMM measured z location of pins in FPS constant  0.0005 0.000200 inches 

17 Fyk measured force due to the yoke constant  8.0639 0.001210 lbs. 

18 ykz  calculated z-distance to CG of yoke constant  4.7439 0.000500 inches 

19 xyk CMM measured x location of hole in the yoke   0.0000 0.000200 inches 

20 yyk CMM measured y location of hole in the yoke   0.0022 0.000200 inches 

21 Fq2x measured force due to the 2-axis accel. sys. constant  1.4054 0.000211 lbs. 

22 yq2x measured y-distance to the CG of 2-axis accel. constant  0.0375 0.002000 inches 

23 zq2x measured z-distance to the CG of 2-axis accel. constant  10.5215 0.000200 inches 

24 ykα  measured angle of the yoke orientation in pitch -1 1  0.001000 degrees 

25 ykφ  measured angle of the yoke orientation in roll -1 1  0.001000 degrees 

26 FKES measured force due to the knife-edge system constant  1.2275 0.000184 lbs. 

27 zKE CMM measured z loaction of knife-edge system constant  8.0844 0.000200 inches 
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Figure 3.  Sensitivity Coefficients for a Six Component Combination. 
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Figure 4.  Total Uncertainty of Experimental Design Points 
 

Concluding Remarks 
An uncertainty analysis of the Single-Vector 

System has been presented.  This analysis has provided 
insight into the uncertainty in setting the independent 
variables during a calibration experiment.  The 
computation of the total uncertainty is necessary to 
define the attainable accuracy of a specific balance 
under calibration. 

A complete mathematical model that defines the 
relationship between the elemental sources of error and 
the desired forces and moment has been presented.  The 
sensitivity of the forces and moments to each elemental 
source of error has illustrated the dominant sources.  An 
example of the calculation of the total uncertainty has 
been provided for a specific balance 

A rigorous uncertainty analysis of the force 
calibration system is necessary to be able to quantify 
the limits for a specific balance calibration.  This paper 
documents the uncertainty analysis of the SVS and 
presents a general method that is applicable to other 
force balance calibration systems. 
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